30/07/2010

Energia Elétrica

Hidrelétricas


Usinas hidrelétricas produzem mais de 90% da energia elétrica consumida no Brasil. Eles dependem das águas dos rios em níveis adequados em suas represas para gerar energia. A falta de chuvas, de investimentos e aumento do consumo resultou em racionalização de energia elétrica, conhecido como apagão. A construção de novas usinas hidrelétricas significa impactos ambientais como grandes áreas que são inundadas, alterando o ecossistema.


Itaipu

Construída sobre o Rio Paraná, que divide Brasil e o Paraguai, Itaipu é a maior usina hidrelétrica do mundo. O rio corre ao longo da fronteira dos dois países e durante as negociações diplomáticas iniciais de construção da barragem, ambos os países estavam sofrendo das secas. O objetivo inicial era fornecer uma melhor gestão e aproveitamento dos recursos hídricos para o uso da irrigação de culturas. A Argentina também foi mais tarde incorporada em alguns planejamentos e acordos porque é um dos afetados diretamente pela construção. Se a barragem ficar completamente aberta para o fluxo de água, áreas ao sul, como Buenos Aires, teriam grande potencial de serem inundadas. A construção da barragem começou em 1975 e o primeiro gerador foi inaugurado em 1983. Hoje, a barragem fornece mais de 75% das necessidades de energia elétrica do Paraguai e atende a quase 25% da demanda de eletricidade do Brasil. Estima-se que 10.000 moradores foram desalojados pela construção da barragem e cerca de 40.000 pessoas foram contratadas para ajudar na construção do projeto. Muitas preocupações ambientais foram negligenciados durante a construção da barragem, porque a barragem iria produzir uma quantidade tão grande de energia com quase nenhuma emissão de poluentes e sem subprodutos indesejáveis, tal como acontece com a energia nuclear.

Impactos ambientais na construção de hidrelétricas

Os impactos ambientais das usinas hidrelétricas é motivo de polêmica nas discussões atuais sobre desenvolvimento sustentável. Como praticamente qualquer atividade econômica, as hidrelétricas causam impactos negativos ao ambiente. A grande questão dos cientistas é saber qual a real dimensão do impacto e como eles podem ser amenizados, já que, dentro das fontes energéticas atuais, as hidrelétricas são consideradas fontes de energia renovável, ao contrário das fontes energéticas à base de combustíveis fósseis, por exemplo.
Os primeiros impactos ambientais acontecem durante a construção das hidrelétricas. Como já foi visto, para que a usina funcione é necessário um reservatório. Sua construção acaba afetando consideravelmente a fauna e flora local. De uma hora para outra, a floresta vira lago. Essa mudança, se não for bem orientada, pode acabar com a flora local. Além do corte das árvores, muitas espécies acabam submersas e, conseqüentemente, morrem, criando uma espécie de limbo. Essa flora, em alguns casos, chega a atrapalhar o próprio funcionamento das turbinas no primeiro momento, obrigando a limpezas sistemáticas das mesmas.
Muitas espécies animais acabam fugindo do seu habitat natural durante a inundação. No caso da construção da hidrelétrica de Tucuruí, no Pará, um exemplo de má administração das questões ambientais na construção, cientistas relatam a fuga em massa de macacos, aves e outras espécies durante os dois meses que durou a inundação do lago de 2.430 km2. A estimativa é que apenas 1% das espécies sobreviveram em Tucuruí. Obviamente, a mitigação desse problema pode ser feita com o remanejamento antecipado das espécies, mesmo assim, algumas espécies correm o risco de não se adaptarem ao novo habitat.
Já as espécies aquáticas sofrem um impacto ainda maior. Como a hidrelétrica é composta de uma barragem, o fluxo natural dos peixes acabam sendo interrompido drasticamente. A conseqüência é a proliferação de determinadas espécies em relação a outras. Há também espécies que normalmente sobem o leito do rio no sentido contrário da correnteza para depositar suas ovas no período chamado de piracema. Para tentar amenizar o problema são construídas escadas nas barragens para que o peixes migratórios possam circular. A concepção de degraus é para evitar que algumas espécies morram de exaustão ao tentar repetir o seu fluxo natural de migração.
Soma-se a esse impacto, a eutrofização das águas, que é o excesso de nutrientes, aumenta a proliferação de microorganismo, causa comum de poluição de águas, podendo causar também conseqüências para o homem, como, por exemplo, epidemias.
Outro problema é a mudança climática que os lagos podem causar. Afinal, como já foi dito, aonde havia floresta agora há um lago, o que pode elevar a temperatura ambiente e mudar o ciclo de chuvas.
Gases do efeito estufa – Esta é a parte mais polêmica e ainda inconclusa sobre os impactos ambientais de uma usina hidrelétrica. Durante suas construções e funcionamento, as usinas hidrelétricas emitem gás carbônico (CO2) e metano (CH4), dois dos principais causadores do aumento prejudicial do efeito estufa. A questão é saber se esse impacto é tão grande quanto das termoelétricas movidas a carvão mineral, consideradas atualmente, junto com os veículos à gasolina, as grandes vilãs do aquecimento global. Pesquisadores do Instituto Nacional de Pesquisas na Amazônia (Inpa) constataram que, na usina de Balbina, no Amazonas, as emissões desses gases pode chegar a ser 10 vezes maior que as das termoelétricas. Este e outros estudos, no entanto, ainda estão limitados a um determinado período de tempo.

DICA:
Tentar não usar muita energia durante o horário de pico, entre 18 e 21 horas, é necessário para evitar a necessidade de construir novas centrais de energia e linhas de transmissão só para atender a demanda nesse período. Novas barragens causma elevados custos sociais e ambientais devido à inundação da terra e pela destruição dos habitats de animais, plantas e comunidades inteiras que, muitas vezes, não são compensadas (reassentamento ou indenização). Grandes usinas hidrelétricas inundam imensas áreas de florestas e emitem grandes quantidades de metano para a atmosfera. Só existe desenvolvimento sustentável com energia vinda de novas fontes renováveis. Pequenas hidrelétricas podem produzir energia de forma descentralizada, com impacto ambiental reduzido. Essa opção pode ser implementada em várias regiões do país fazendo uso de cascatas naturais. Muitos agricultores brasileiros escolheram esta forma de produção de energia hidrelétrica.

09/07/2010

Energia Solar



Energia solar é a designação dada a qualquer tipo de captação de energia luminosa (e, em certo sentido, da energia térmica) proveniente do sol, e posterior transformação dessa energia captada em alguma forma utilizável pelo homem, seja directamente para aquecimento de água ou ainda como energia eléctrica ou mecânica.

Tipos de energia solar

Os métodos de captura da energia solar classificam-se em diretos ou indiretos:
Direto significa que há apenas uma transformação para fazer da energia solar um tipo de energia utilizável pelo homem. Exemplos:
A energia solar atinge uma célula fotovoltaica criando eletricidade. (A conversão a partir de células fotovoltaicas é classificada como direta, apesar de que a energia elétrica gerada precisará de nova conversão - em energia luminosa ou mecânica, por exemplo - para se fazer útil.)
A energia solar atinge uma superfície escura e é transformada em calor, que aquecerá uma quantidade de água, por exemplo - esse princípio é muito utilizado em aquecedores solares.
Indireto significa que precisará haver mais de uma transformação para que surja energia utilizável. Exemplo: Sistemas que controlam automaticamente cortinas, de acordo com a disponibilidade de luz do Sol.
Também se classificam em passivos e ativos:
Sistemas passivos são geralmente diretos, apesar de envolverem (algumas vezes) fluxos em convecção, que é tecnicamente uma conversão de calor em energia mecânica.
Sistemas ativos são sistemas que apelam ao auxílio de dispositivos elétricos, mecânicos ou químicos para aumentar a efetividade da coleta. Sistemas indiretos são quase sempre também ativos.


Vantagens e desvantagens da energia solar

Vantagens
A energia solar não polui durante seu uso. A poluição decorrente da fabricação dos equipamentos necessários para a construção dos painéis solares é totalmente controlável utilizando as formas de controles existentes atualmente.
As centrais necessitam de manutenção mínima.
Os painéis solares são a cada dia mais potentes ao mesmo tempo que seu custo vem decaindo. Isso torna cada vez mais a energia solar uma solução economicamente viável.
A energia solar é excelente em lugares remotos ou de difícil acesso, pois sua instalação em pequena escala não obriga a enormes investimentos em linhas de transmissão.
Em países tropicais, como o Brasil, a utilização da energia solar é viável em praticamente todo o território, e, em locais longe dos centros de produção energética, sua utilização ajuda a diminuir a demanda energética nestes e consequentemente a perda de energia que ocorreria na transmissão.

Desvantagens
Um painel solar consome uma quantidade enorme de energia para ser fabricado. A energia para a fabricação de um painel solar pode ser maior do que a energia gerada por ele.
Os preços são muito elevados em relação aos outros meios de energia.
Existe variação nas quantidades produzidas de acordo com a situação atmosférica (chuvas, neve), além de que durante a noite não existe produção alguma, o que obriga a que existam meios de armazenamento da energia produzida durante o dia em locais onde os painéis solares não estejam ligados à rede de transmissão de energia.
Locais em latitudes médias e altas (Ex: Finlândia, Islândia, Nova Zelândia e Sul da Argentina e Chile) sofrem quedas bruscas de produção durante os meses de inverno devido à menor disponibilidade diária de energia solar. Locais com frequente cobertura de nuvens (Curitiba, Londres), tendem a ter variações diárias de produção de acordo com o grau de nebulosidade.
As formas de armazenamento da energia solar são pouco eficientes quando comparadas, por exemplo, aos combustíveis fósseis (carvão, petróleo e gás), a energia hidroelétrica (água) e a biomassa (bagaço da cana ou bagaço da laranja).
À semelhança de outros países do mundo, em Portugal desde Abril de 2008 um particular pode produzir e vender energia elétrica à rede elétrica nacional, desde que produzida a partir de fontes renováveis. Um sistema de microprodução ocupa cerca de 30 metros quadrados e permite ao particular receber perto de 4 mil euros ano.

Gás Natural


O gás natural é uma mistura de hidrocarbonetos leves encontrada no subsolo, na qual o metano tem uma participação superior a 70 % em volume. A composição do gás natural pode variar bastante dependendo de fatores relativos ao campo em que o gás é produzido, processo de produção, condicionamento, processamento, e transporte. O gás natural é um combustível fóssil e uma energia não-renovável.

História do Gás Natural

O gás natural é conhecido pela humanidade desde os tempos da antiguidade. Em lugares onde o gás mineral era expelido naturalmente para a superfície, povos da antiguidade como Persas, Babilônicos e Gregos construiram templos onde mantinham aceso o "fogo eterno".
Um dos primeiros registros históricos de uso econômico ou socialmente aproveitável do gás natural, aparece na China dos século XVIII e IXX. Os chineses utilizaram locais de escape de gás natural mineral para construir auto-fornos destinados à cerâmica e metalurgia de forma ainda rudimentar.
O gás natural passou a ser utilizado em maior escala na Europa no final do século XIX, com a invenção do queimador Bunsen, em 1885, que misturava ar com gás natural e com a construção de um gasoduto à prova de vazamentos, em 1890.
Porém as técnicas de construção de gasodutos eram incipientes, não havendo transporte de grandes volumes a longas distâncias, conseqüentemente, era pequena a participação do gás em relação ao óleo e ao carvão. Entre 1927 e 1931, já existiam mais de 10 linhas de transmissão de porte nos Estados Unidos, mas sem alcance interestadual, no final de 1930 os avanços da tecnologia já viabilizavam o transporte do gás para longos percursos. A primeira edição da norma americana para sistemas de transporte e distribuição de gás (ANSI/ASME B31.8) data de 1935.
O grande crescimento das construções pós-guerra, durou até 1960, foi responsável pela instalação de milhares de quilômetros de gasodutos, dado os avanços em metalurgia, técnicas de soldagem e construção de tubos. Desde então, o gás natural passou a ser utilizado em grande escala por vários países, dentre os quais podemos destacar os Estados Unidos, Canadá, Japão além da grande maioria dos países Europeus, isso se deve principalmente as inúmeras vantagens econômicas e ambientais que o gás natural apresenta.


O gás natural no Brasil

A utilização do gás natural no Brasil começou modestamente por volta de 1940, com as descobertas de óleo e gás na Bahia, atendendo a indústrias localizadas no Recôncavo Baiano. Após alguns anos, as bacias do Recôncavo, Sergipe e Alagoas destinavam quase em sua totalidade para a fabricação de insumos industriais e combustíveis para a RELAM e o Pólo Petroquímico de Camaçari.
Com a descoberta da Bacia de Campos as reservas provadas praticamente quadruplicaram no período 1980-95. O desenvolvimento da bacia proporcionou um aumento no uso da matéria-prima, elevando em 2,7% sua participação na matriz energética nacional.
Com a entrada em operação do Gasoduto Brasil-Bolívia em 1999, com capacidade de transportar 30 milhões de metros cúbicos de gás por dia (equivalente a metade do atual consumo brasileiro), houve um aumento expressivo na oferta nacional de gás natural. Este aumento foi ainda mais acelerado depois do apagão elétrico vivido pelo Brasil em 2001 e 2002, quando o governo optou por reduzir a participação das hidrelétricas na matriz energética brasileira e aumentar a participação das termoelétricas movidas à gás natural.
Nos primeiros anos de operação do gasoduto, a elevada oferta do produto e os baixos preços praticados, favoreceram uma explosão no consumo tendo o gás superado a faixa de 10% de participação na matriz energética nacional.
Nos últimos anos, com as descobertas nas bacias de Santos e do Espírito Santo as reservas Brasileiras de gás natural tiveram um aumento significativo. Existe a perspectiva de que as novas reservas sejam ainda maiores e a região subsal ou "pré-sal" tenha reservas ainda maiores.

Apesar disso, o baixo preço do produto e a dependência do gás importado, são apontados como um inibidores de novos investimentos. A insegurança provocada pelo rápido crescimento da demanda e interrupções intermitentes no fornecimento boliviano após o processo de do gás na Bolívia levaram a Petrobrás a investir mais na produção nacional e na construção de infra-estrutura de portos para a importação de GNL (Gás Natural Liquefeito). Principalmente depois dos cortes ocorridos durante uma das crises resultantes da longa disputa entre o Governo Evo Morales e os dirigentes da província de Santa Cruz, obrigaram a Petrobrás reduzir o fornecimento do produto para as distribuidoras de gás do Rio de Janeiro e São Paulo no mês de novembro de 2006.
Assim, apesar do preço relativamente menor do metro cúbico de gás importado da Bolívia, a necessidade de diminuir a insegurança energética do Brasil levou a Petrobrás a decidir por uma alternativa mais cara porém mais segura: a construção de terminais de importação de GNL no Rio de Janeiro e em Pecém, no Ceará Ambos os terminais já começaram a funcionar e permitem ao Brasil, importar de qualquer país praticamente o mesmo volume de gás que hoje o país importa da Bolívia.
Para ampliar ainda mais a segurança energética do Brasil, a Petrobrás pretende, simultaneamente, ampliar a capacidade de importação de gás construindo novos terminais de GNL no sul e sudeste do país até 2012, e ampliar a produção nacional de gás natural nas reservas da Santos.


Utilização

O gás natural é empregue diretamente como combustível, tanto em indústrias, casas e automóveis. É considerado uma fonte de energia mais limpa que os derivados do petróleo e o carvão. Alguns dos gases de sua composição são eliminados porque não possuem capacidade energética (nitrogênio ou CO2) ou porque podem deixar resíduos nos condutores devido ao seu alto peso molecular em comparação ao metano (butano e mais pesados).

Combustível: A sua combustão é mais limpa e dá uma vida mais longa aos equipamentos que utilizam o gás e menor custo de manutenção.

Automotivo: Utilizado para motores de ônibus, automóveis e caminhões substituindo a gasolina e o álcool, pode ser até 70% mais barato que outros combustíveis e é menos poluente.

Industrial: Utilizada em indústrias para a produção de metanol, amônia e uréia.

As desvantagens do gás natural em relação ao butano são: mais difícil de ser transportado, devido ao fato de ocupar maior volume, mesmo pressurizado, também é mais difícil de ser liquificado, requerendo temperaturas da ordem de -160 °C.
Algumas jazidas de gás natural podem conter mercúrio associado. Trata-se de um metal altamente tóxico e deve ser removido no tratamento do gás natural. O mercúrio é proveniente de grandes profundidades no interior da terra e ascende junto com os hidrocarbonetos, formando complexos organo-metálicos.
Atualmente estão sendo investigadas as jazidas de hidratos de metano que se estima haver reservas energéticas muito superiores às atuais de gás natural.

Energia Eólica



A energia eólica é a energia que provém do vento. O termo eólico vem do latim aeolicus, pertencente ou relativo a Éolo, Deus dos ventos na mitologia grega e, portanto, pertencente ou relativo ao vento.

Conversão em energia mecânica

A bolina sob o barco a vela oferece resistência lateral à ação do vento, permitindo um avanço gradual através do vento.
A energia eólica tem sido aproveitada desde a antiguidade para mover os barcos impulsionados por velas ou para fazer funcionar a engrenagem de moinhos, ao mover as suas pás. Nos moinhos de vento a energia eólica era transformada em energia mecânica, utilizada na moagem de grãos ou para bombear água. Os moinhos foram usados para fabricação de farinhas e ainda para drenagem de canais, sobretudo nos Países Baixos.

Conversão em energia elétrica

Na atualidade utiliza-se a energia eólica para mover aerogeradores - grandes turbinas colocadas em lugares de muito vento. Essas turbinas têm a forma de um catavento ou um moinho. Esse movimento, através de um gerador, produz energia elétrica. Precisam agrupar-se em parques eólicos, concentrações de aerogeradores, necessários para que a produção de energia se torne rentável, mas podem ser usados isoladamente, para alimentar localidades remotas e distantes da rede de transmissão. É possível ainda a utilização de aerogeradores de baixa tensão quando se trata de requisitos limitados de energia elétrica.
A energia eólica pode ser considerada uma das mais promissoras fontes naturais de energia, principalmente porque é renovável, ou seja, não se esgota, limpa, amplamente distribuída globalmente e, se utilizada para substituir fontes de combustíveis fósseis, auxilia na redução do efeito estufa. Em países como o Brasil, que possuem uma grande malha hidrográfica, a energia eólica pode se tornar importante no futuro, porque ela não consome água, que é um bem cada vez mais escasso e que também vai ficar cada vez mais controlado. Em países com uma malha hidrográfica pequena, a energia eólica passa a ter um papel fundamental já nos dias atuais, como talvez a única energia limpa e eficaz nesses locais. Além da questão ambiental, as turbinas eólicas possuem a vantagem de poderem ser utilizadas tanto em conexão com redes elétricas como em lugares isolados, não sendo necessário a implementação de linhas de transmissão para alimentar certas regiões (que possuam aerogeradores).
Em 2009 a capacidade mundial de geração de energia elétrica através da energia eólica foi de aproximadamente 158 gigawatts (GW), o suficiente para abastecer as necessidades básicas de dois países como o Brasil(o Brasil gastou em média 70 gigawatts em janeiro de 2010). Para se ter uma idéia da magnitude da expansão desse tipo de energia no mundo, em 2008 a capacidade mundial foi de cerca de 120 GW e, em 2008, 59 GW.
Um aerogerador é um dispositivo que aproveita a energia eólica e a converte em energia elétrica. A capacidade de geração de energia eólica no Brasil foi de 606 megawatts (MW) em 2009, onde houve um aumentou de 77,7% em relação ao ano anterior. A capacidade instalada em 2008 era de 341 MW. O Brasil responde por cerca da metade da capacidade instalada na América Latina, mas representa apenas 0,38% do total mundial.
Os EUA lideram o ranking dos países que mais produzem energia através de fonte eólica. O total instalada nesse país ultrapassa os 35 GW. Atrás deles vem a Alemanha, com cerca de 26 GW instaladas, e a China, com 25 GW.
Em alguns países, a energia elétrica gerada a partir do vento representa significativa parcela da demanda. Na Dinamarca esta representa 23% da produção, 6% na Alemanha e cerca de 8% em Portugal e na Espanha (dados de setembro de 2007). Globalmente, a energia eólica não ultrapassa o 1% do total gerado por todas as fontes.
O custo da geração de energia eólica tem caído rapidamente nos últimos anos. Em 2005 o custo da energia eólica era cerca de um quinto do que custava no final dos anos 1990, e essa queda de custos deve continuar com a ascensão da tecnologia de produção de grandes aerogeradores. No ano de 2003 a energia eólica foi a forma de energia que mais cresceu nos Estados Unidos.
A maioria das formas de geração de eletricidade requerem altíssimos investimentos de capital e baixos custos de manutenção. Isto é particularmente verdade para o caso da energia eólica, onde os custos com a construção de cada aerogerador podem alcançar milhões de reais, os custos com manutenção são baixos e o custo com combustível é zero. Na composição do cálculo de investimento e custo nesta forma de energia levam-se em conta diversos fatores, como a produção anual estimada, as taxas de juros, os custos de construção, de manutenção, de localização e os riscos de queda dos geradores. Sendo assim, os cálculos sobre o real custo de produção da energia eólica diferem muito, de acordo com a localização de cada usina.
Apesar da grandiosidade dos modernos moinhos de vento, a tecnologia utilizada continua a mesma de há 1000 anos, tudo indicando que brevemente será suplantada por outras tecnologias de maior eficiência, como é o caso da turbovela, uma voluta vertical apropriada para capturar vento a baixa pressão ao passar nos rotores axiais protegidos internamente. Esse tipo não oferece riscos de colisões das pás com objetos voadores (animais silvestres) e não interfere na áudiovisão. Essa tecnologia já é uma realidade que tanto pode ser introduzida no meio ambiente marinho como no terrestre.

Parque Eólico de Osório

O parque eólico de Osório é um parque de produção de energia eólica na cidade de Osório, RS. É composto por 75 torres de aerogeradores de 98 metros de altura e 810 toneladas de peso cada uma, podendo ser vistas da auto-estrada BR-290 (Free-Way), RS-030 e de praticamente todos os bairros da cidade.
O parque tem uma capacidade instalada estimada em 150 MW (energia capaz de atender uma cidade de 700 mil habitantes), sendo a maior usina eólica da América Latina. O fator de capacidade médio dos parques eólicos de Osório é de 34%, o que significa dizer que ele produz, em média, 34% da capacidade total instalada. A média mundial deste fator é de 30%.
O Parque de Osório é um empreendimento da Ventos do Sul Energia, pertencente à espanhola Enerfin/Enervento (Grupo Elecnor) com 90%, à alemã Wobben com 9% e à brasileira CIP Brasil, com 1%. O empreendimento envolveu um aporte de R$ 670 milhões, dos quais 69% financiados pelo BNDES (Banco Nacional de Desenvolvimento Econômico e Social).
Dentro do parque eólico estão sendo construídos 24 km de estradas.